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Abstract 
 
 This paper is to model periodic preventive maintenance policies over an infinite time span for the 

deteriorating systems with minimal repair at each failure.  The concept of the improvement factor method is 
applied to measure the restoration of a system after each PM. An improvement factor is established as a 
function of the system’s age and the cost of each PM. Then, two periodic PM models are developed for the 
cases of considering and without considering failure limit. The optimal PM interval and the optimal 
replacement time for the two cases can be obtained by minimizing the objective functions of the cost rate 
through the algorithms provided by this research. An example of using Weibull failure distribution is 
provided to investigate the proposed models. 

 

1. Introduction 
It has been shown that the imperfect preventive maintenance can restore the age of a deteriorating system 
(or machine) to younger age and reduce the system’s failure rate (Pham and Wang 1996). Nakagawa 
(1979) presents a model to describe that the age of a system is reduced by a certain units of time after 
performing a preventive maintenance (PM). Canfield (1986) proposes a periodic PM policy which is 
assumed to slow the rate of system degradation, while the hazard rate keeps monotone increase. Chan and 
Shaw (1993) also study the reduction of the failure rate after performing PM.  

Malik (1979) proposes the improvement factor to measure the restoration of age and failure rate of a 
system after performing a PM. Jayabalan and Chaudhuri (1992) also use the improvement factor method 
to investigate the restoration effect on the age of a system after a PM. Most of the PM models with the 
improvement factor in the literature assume that the improvement factor be constants. Lie and Chun 
(1986) consider the improvement factor as a variable, yet, some parameters are not well defined. Yang et 
al. (2003) also propose an improvement factor which is a function of the number of PM performed and 
the cost of each PM. 

In the literature, many PM models proposed for deteriorating systems are typically to determine the 
optimum interval between PMs and the number of PMs before replacing the system by minimizing the 
expected average cost over a finite or infinite time span. Nakagawa (1986) considers periodic and 
sequential PM policies for the system with minimal repair at failure and provides the optimal policies by 
minimizing the expected cost rates. 

In this paper, the periodic PM models in an infinite time span are proposed for the deteriorating systems 
with minimal repair at each failure. Two PM policies with: (1) no failure limit; (2) failure limit are 



considered. The improvement factor developed by Yang et al. (2003) is applied in this research to 
measure the restoration effect of a system after each PM. The optimal PM interval and the optimal 
number of PM before replacement of the proposed models are determined by minimizing the cost rate. An 
example of using Weibull failure distribution is given to investigate the proposed models. 

2. Models and assumptions 
A preventive maintenance model is developed with applying the improvement factor provided by Yang et 
al. (2003). The assumptions of the proposed PM models are as follows. 
z The system is repairable and is deteriorating over time with increasing failure rate (IFR). 
z Periodic PMs with constant interval (h) are performed over an infinite time span. 
z Minimal repair is performed when failure occurs between PMs. 
z The system is replaced at the end of the Nth interval. 
z The improvement factor of each PM is a variable, which is a function of the number of PM 

performed and the cost of PM. 
z The costs of PM, minimal repair, and replacement are assumed to be constant. The cost of PM and 

the cost of minimal repair are not greater than the cost of replacement. 
z The times to perform PM, minimal repair, and replacement are negligible. 
 
2.1 The improvement factor 

The improvement factor applied in this paper is developed by Yang et al. (2003), which is assumed to be a 
function of the number of PM performed and the cost of each PM. The function of this improvement 
factor is shown as follows. 
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where ηi represents the improvement factor of the ith PM, 0 < ηi < 1, Cpm is the cost of each PM, Cpr is the 
replacement cost of a system, a and b are the adjustment parameters for the improvement factor.  
 
2.2 The effective age and the reliability function 

The effective age before and after the ith PM can be obtained as follows, respectively. 
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where h represents the time interval between two PMs, (N-1) represents the number of PMs, and hW =−
1 . 

The effective age between (i-1)th and ith PM is shown as below. 

 tWtW ii += +
−1)( ,   where  0 < t < h.  (4) 

2.3 The cost rate function of the PM model 

The cost rate function of the proposed PM model can be obtained as follows. 
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where Cmr is the cost of each minimal repair, λi(t) is the hazard rate function between the ith and the (i+1)th 
PMs, and λ0(t) is the original hazard rate function. In this research, Weibull failure distribution with shape 
parameter β and scale parameter θ is applied as a study case. 
 
2.4 The optimal number of PMs and the optimal time to replacing a system 

2.4.1 The PM model without failure rate limit 

Since λi(t)<λi+1(t) for 0≤ t≤h, the algorithm provided by Nakagawa (1986) can be applied to find the 
optimal solution, which is shown as follows. 

(1) By taking the partial derivative of h of the cost rate function and letting it equal to zero, then, the 
solution of h, h*, can be obtained as below. 
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(2) Then, the optimal value of N, N*, can be determined so that   

 N* = 
N

min  C(h*, N), N = 1, 2, …  (7) 

2.4.2 The PM model with failure rate limit 

Suppose that the system has to be replaced when the reliability or failure rate reaches a certain level, say 
R* or λ*, respectively. Let −

RNW be the effective age of which the failure rate reaches λ* and the replacement 
is in the NR

th PM. Then, we can obtain 
 *)( RWR

RN =−  or *)( λλ =−
RNW   (8) 

Thus, the periodic interval of PM for this model (hR) can be found as 
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Then, the optimal value of N, NR, can be determined so that   

 NR = 
N

min  C(hR, N), N = 1, 2, …  (10) 

3. Numerical examples 

From a numerical example with the following conditions: Weibull(β=10, θ=100), Cpm = 10000, Cmr = 
50000, Cpr = 5000000, a = 1, b = 0.001 and R* = 0.6, we can obtain the optimal solution of N* = 18, h* = 
60.895, T = h*N* = 1096, and C(h*,N*) = 5241 for the case of no reliability limit; NR = 18, hR = 48.769, T 
= hRNR = 878, and C(hR, NR) = 5961 for the case of having reliability limit. The effects of Cpm and Cmr as 
well as of parameters a and b for the proposed models are shown below.  



Table 1: The effect of Cpm and Cmr for the proposed models 

Cpm/Cmr = 0.5 Cpm/Cmr = 2 Cpm/Cmr = 10 Cpm = 10000 
 

Cmr = 50000 Cpm/Cmr = 2 Cpm/Cmr =0.5 Cpm/Cmr = 0.1

Contraint No 
limit 

Reliab. 
limit 

No 
limit 

Reliab. 
limit

No 
limit

Reliab. 
limit

No 
limit

Reliab. 
limit

No 
limit 

Reliab. 
limit 

No 
limit 

Reliab. 
limit

h* hR 62.13 52.35 71.00 58.99 91.69 75.46 76.66 48.77 66.74 48.77 56.82 48.77
N* NR 19 18 19 18 17 15 18 18 18 18 18 18 

T=h*N* T=NRhR 1181 942 1349 1062 1559 1132 1380 878 1201 878 1023 878 
C(h*,N*) C(hR,NR) 5130 5829 5601 6385 9267 10715 4163 5897 4782 5918 5617 6032

RT R* 0.009 0.6 0.007 0.6 0.002 0.6 3.6E-21 0.6 7.8E-6 0.6 0.095 0.6 
 

Table 2: The effect of parameters a and b for the proposed models 

a = 1 a = 10 a = 100 a = 1 
 

b = 0.001 b = 0.0001 b =0.001 b = 0.1 

Contraint No 
limit 

Reliab. 
limit 

No 
limit 

Reliab. 
limit

No 
limit

Reliab. 
limit

No 
limit

Reliab. 
limit

No 
limit 

Reliab. 
limit 

No 
limit 

Reliab. 
limit

h* hR 60.90 48.77 58.57 49.77 57.21 49.55 56.78 50.62 60.90 48.77 58.44 43.00
N* NR 18 18 23 22 35 34 54 53 18 18 3 3 

T=h*N* T=NRhR 1096 878 1347 1095 2002 1685 3066 2683 1096 878 175 129 
C(h*,N*) C(hR,NR) 5241 5961 4306 4827 2963 3227 2004 2119 5241 5961 31817 39113

RT R* 0.009 0.6 0.018 0.6 0.059 0.6 0.147 0.6 0.009 0.6 1.7E-5 0.6 
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